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ABSTRACT 
Ultra-high-resolution tiled display walls are typically driven by a 
cluster of computers. Each computer may drive one or more 
displays. Synchronization between the computers is necessary to 
ensure that animated imagery displayed on the wall appears 
seamless. Most tiled display middleware systems are designed 
around the assumption that only a single application instance is 
running in the tiled display at a time, therefore synchronization 
can be achieved with a simple solution such as a networked 
barrier. When a tiled display has to support multiple applications 
at the same time, the simple networked barrier approach does 
not scale. In this paper we propose and experimentally validate 
two synchronization algorithms to achieve low-latency inter-tile 
synchronization for multiple applications with independently 
varying frame-rates. The Two-Phase algorithm is more generally 
applicable to various high-resolution tiled display systems. The 
One-Phase algorithm provides superior results but requires the 
support for NTP, and is more CPU-intensive. 

 

Categories and Subject Descriptor 
I.3.2 [Computer Graphics]: Graphics Systems – 
Distributed/network graphics; C.2.4 [Computer-
Communication Networks]: Distributed Systems – 
Client/server; D.4.1 [Operating Systems]: Process 
Management – Synchronization  
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1. Introduction 
Ultra-high-resolution display walls are fast becoming a standard 
tool for scientific research. These types of displays are the only 
means by which scientists can see the massive data generated 
from their instruments and supercomputer simulations. With the 

advent of low-cost LCDs, researchers are now using tiled 
display walls as “mash up” environments where they can 
juxtapose a variety of data so that they can look at them as a 
whole [16]. While similar to the notion of Project Rooms or War 
Rooms of the past, a key difference is that for large-scale and 
collaborative scientific research, there is no other way to look at 
this magnitude of data. These projects routinely deal with time-
varying data on the order of terabytes to petabytes. It is 
impossible to manage this information by printing out static 
diagrams on sheets of paper and pinning them to a wall as has 
been the traditional approach. The microscopes and telescopes 
used by scientists today are no longer simple optical 
instruments, but are integrated with complex computing systems 
that perform noise filtering, tiling, and feature detection. Ultra-
high-resolution displays are becoming the new lenses that bring 
the data from these instruments into focus. To meet this 
challenge, the Electronic Visualization Laboratory at University 
of Illinois at Chicago has been conducting research with Sharp 
Labs of America on scalable display wall hardware and 
software. The culmination of this work is LambdaVision, a 100-
Megapixel LCD wall, and the Scalable Adaptive Graphics 
Environment (SAGE) [16], a middleware system for driving 
such walls. Figure 1 shows the LambdaVision driven by SAGE 
that is used for the weekly meeting at Electronic Visualization 
Laboratory. 

LambdaVision is an array of 55 LCD panels that are driven by a 
cluster of 28 computers. The computers cooperate to give the 
users the illusion of a seamless display environment. Therefore, 
precise coordination and synchronization between the computers 
are necessary to ensure that animated images that are displayed 
on the wall appear seamless. The Scalable Adaptive Graphics 
Environment (SAGE) has been developed for this purpose [31]. 
Unlike other tiled display middleware such as Chromium [15] or 
Equalizer [11], SAGE is designed at the outset to manage 
multiple images or animations from different applications at the 
same time enabling users to simultaneously access, stream, and 
juxtapose them on ultra-high-resolution tiled display walls. 
The need to support multiple applications at the same time poses 
a significant challenge for image synchronization. Traditional 



frame synchronization mechanisms used in systems such as 
Chromium or Equalizer do not scale due to increased message 
complexity when it is used in a system that is designed to 
support multiple applications simultaneously. In this paper, we 
propose and validate two new algorithms: a Two-Phase and a 
One-Phase frame synchronization algorithm to achieve low-
latency inter-tile synchronization for multiple applications with 
varying frame-rates. The two algorithms achieve the same goal 
but differ in resource utilization and complexity. A key 
contribution of this paper is proposing a scalable way to achieve 
frame synchronization among display nodes in a tiled display 
wall that can support multiple applications simultaneously. 
 

 
Figure 1.  The SAGE in action. A student presenting at 
the weekly meeting in Electronic Visualization 
Laboratory. 

 
In the sections below, we will discuss in greater detail, the 
synchronization requirements of ultra-high-resolution 
environments and related work. Next, we present background 
information about the SAGE. We will also detail the limitations 
of applying traditional synchronization approaches to SAGE and 
how our new algorithms provide significant improvements. 

 

2. Related Work 
The traditional model for driving tiled display walls is to use the 
entire surface to display a single visualization in exquisite 
resolution. However, as display walls began to grow in size and 
resolution, users found it more useful to be able to use the 
expansive screen estate and resolution for not simply displaying 
a single visualization, but multiples simultaneously so that they 
can compare them side by side [5, 9, 30, 32]. Middleware 
systems that fall under the former category include WireGL 
[14], Chromium [15], DMX [3], Equalizer [11], and CGLX [1]. 
In WireGL and its successor Chromium, one or more servers 
convert data from unmodified applications into OpenGL 
graphics primitives, which are then streamed to clients driving 
the tiled-display wall. CGLX does not distribute graphics 
primitives but runs the same copies of the OpenGL-based 
application on all clients and replicates the data on all the 
clients. Equalizer offers a hybrid approach where the user can 
combine various rendering techniques. DMX (Distributed 
Multihead X Project) provides an X Window System compatible 
environment where multiple displays connected to multiple 
machines are presented as a single unified screen. In DMX, a 
master node distributes X Window primitives on a tiled display. 

All of these approaches assume that a single application 
occupies the entire wall at any given instant. Rendering of the 
content is often conducted directly on the graphics cards that are 
connected to the displays. This has the advantage that it enables 
low-latency generation and manipulation of the images. And the 
frame synchronization among display nodes can be achieved 
easily by implementing a networked barrier at the point that 
needs to be synchronized. A networked barrier works by having 
all display nodes send a message to a barrier server node, and 
wait while the barrier server counts the number of messages it 
has received. When all the messages have been received the 
barrier server broadcasts acknowledgements to every display 
node, which upon receipt unblocks the display nodes. The 
synchronization barrier can be implemented in several ways. In 
cluster computing, the Message Passing Interface (MPI) [2] is 
the de-facto communication mechanism among the nodes. MPI 
supports a barrier among all its communication nodes. This 
ensures that all progress is blocked until all the processes 
running on the nodes enter what is called a “barrier”. This 
approach is sufficient to ensure frame synchronization for single 
applications occupying an entire tiled display. 

Total image synchronization across displays in a tiled-display 
wall is best achieved through a combination of hardware and 
software solutions and is required for the display of stereoscopic 
images [24]. In terms of hardware, the synchronization of 
vertical refresh across multiple graphics cards can be achieved 
using specialized genlock hardware that is built into advanced 
graphics cards such as those found in Nvidia’s Quadro series 
[21-23]. Alternatively, Jeremie et al. [17] presented a cost-
effective approach using custom hardware and parallel port for 
distributing vertical refresh synchronization signals. This can be 
used with any graphics hardware. Combined with software 
synchronization methods presented in many papers, these can 
provide cost-effective solution for total frame synchronization 
between display nodes. 

Chen et al. [7] discussed three different communication methods 
for cluster-based high-resolution display system in their paper. 
These are synchronized execution model where all render nodes 
have the same copy of the application instance (e.g. CGLX), 
primitive distribution model where a client distributes graphics 
primitives to render servers (e.g. Chromium), and pixel 
distribution model where a client renders and transmits only 
pixels to display servers. A synchronization barrier at a certain 
program execution point (such as before graphics buffer swap) 
can be directly used to ensure frame synchronization in the 
synchronized execution model, such as in [4, 7, 12, 33, 35]. In 
the primitive distribution model, which can also be considered 
as a centralized model in that only a single node that has 
application instance distributes graphics primitives or pixels to 
server nodes that render and display, the frame synchronization 
can be achieved implicitly leaving small asynchronies between 
display nodes [25], or a synchronization barrier can be used 
explicitly such as in [11, 14, 15, 20] for tighter frame 
synchronization. SAGE can be categorized as parallel pixel 
distribution model since multiple clients (applications) send 
pixels to multiple display servers (display nodes). In the earlier 
generations of SAGE, we implemented a frame synchronization 
scheme to support multiple applications by using multiple 
synchronization barriers (a barrier per application). However, 
this per-application based synchronization scheme was unable to 
provide the tight synchronization tolerances expected by display 



manufacturers such as Sharp. Our new approaches provide 
significant improvements. 
 

3. Frame Synchronization Requirements of 
a Tiled Display Walls 
To display a continuous image on a tiled display, all the tiles 
that constitute an application window need to be synchronously 
updated. This is especially important for interactive 
visualizations and animations. 

There are three requirements for seamless frame synchronization 
on tiled displays: 

1. Data synchronization: the application data to be displayed 
must be coherent i.e. the various display nodes must 
display parts of the same frame. For multiple applications, 
data synchronization must be achieved for each application 
being displayed. 

2. Swap buffer synchronization: the display thread on each 
node should swap the contents of the graphics buffer 
synchronously in order for the various application windows 
to appear consistent on the display. 

3. Synchronization of the vertical refresh cycles of the various 
displays (gen-lock): the physical refresh of monitors on 
each node should occur synchronously.  

Perfect frame synchronization on tiled displays is achieved by 
satisfying all three requirements. In this paper we will focus on 
all but the third requirement which can normally be achieved 
through the use of specialized hardware. 

 In the case of dedicated tiled display walls that are limited to 
running only a single application at a time, data and swap buffer 
synchronization can be ensured easily with a single 
synchronization barrier. [4, 8, 12-15, 19, 20, 24, 26, 28, 29, 35] 

However, the problem we are attempting to solve is more 
challenging because tiled display walls can have an arbitrary 
number of different application windows in which frame updates 
occur at different rates. If a frame synchronization method for 
tiled display system that runs single application is applied, it 
becomes per-application based synchronization which is not 
scalable due to excessive synchronization messages over 
network generated for each frame from each application. Also 
with per-application-based synchronization, it is difficult to 
obtain swap buffer synchronization across display nodes 
because each application sends frames at different rates. This 
can cause the events (data and swap buffer synchronizations) of 
the same application to become partially ordered on a cluster, 
that can lead to unsynchronized display of frames. For multiple 
applications to be displayed seamlessly on a tiled display wall, 
total ordering of data and swap buffer synchronization across all 
applications is required. The total ordering of events in a 
distributed system is described in detail in [18]. 

In Section 5, we will propose two scalable frame algorithms that 
ensure total ordering of data synchronization of all applications 
and swap buffer synchronization between display nodes with 
minimal impact on applications’ frame rate and latency. 
 

4. Scalable Adaptive Graphics Environment 
(SAGE) 
SAGE is a cross-platform middleware system for driving ultra-
resolution tiled displays. Unlike other approaches, such as 
Chromium, SAGE delegates the rendering of graphics to 
remotely located compute clusters, and relies on the use of high 
speed networks to stream the pixels of the visualization to the 
displays. This “thin-client” model has the advantage that large 
cluster farms or supercomputers can be brought to bear to render 

 

Figure 2. In SAGE, while a compute cluster drives the individual displays it merely acts as a light-weight client which receives 
pixels from remote rendering resources such as visualization clusters or supercomputers. 



datasets that may be too large to fit on an individual graphics 
card [34]. In SAGE, a single window displayed on a wall may 
be driven by any number of display nodes, and multiple 
windows can be displayed on the wall simultaneously. As 
windows are moved from one portion of the wall to another, 
SAGE seamlessly reroutes the pixels to a different set of 
computers driving the display tiles so that handling of the 
windows on the display is totally transparent from the 
application. The SAGE model is shown in Figure 2. 

 

4.1 Architecture 
In SAGE, each application gives its rendered pixels to the 
SAGE Application Interface Library (SAIL) that streams them 
to the appropriate display nodes depending on the current 
position and size of the window on the display. Each display 
node can receive and display multiple pixel streams 
independently to allow multiple applications to be shown 
concurrently on the tiled display. The Free Space Manager 
(FSManager) is the main component of SAGE that keeps track 
of the current display parameters and the arrangement of the 
application pixels on the display. Based on the requested 
arrangement, the FSManager directs SAIL to distribute an 
application’s pixels to the appropriate display nodes. The 
applications can be dynamically moved and resized with the 
help of the UI client. SAGE consists of following main 
components: 

 SAGE Application Interface Library (SAIL) enables an 
application to stream pixel data onto the display wall. 

 The application pixel streams are received by the 
SAGE Application Receiver threads (APP). 

 Each node has a Node Display Manager (NDM) 
responsible displaying the contents of all applications 
on the display. 

 Using the SAGE UI, a user can launch, resize, and 
move application windows on the tiled-display. 

The Free Space Manager (FSManager) co-ordinates the various 
components. An example of SAGE session that runs on four 
display nodes and displays two applications is depicted in Figure 
3. 

 
Figure 3.  The SAGE Components. It shows an 
example of four display nodes running two 
applications, App1 and App2 each distributed on tile 
0, 1, and 2 and tile 1, 2, and 3 respectively. 

4.2 SAGE’s Frame Synchronization 
Algorithm 
In this section we will discuss the limitations of SAGE’s former 
frame synchronization method. We employed a dynamic 
networked barrier per application for data synchronization. By 
handling multiple barriers at a time, we achieved data 
synchronization in SAGE [16]. 

A synchronization group (SyncGroup) which consists of a set of 
display nodes that shows an application’s image is maintained 
for each application. Members (display nodes) in the group can 
be dynamically changed as a user moves or resizes an 
application window. And a data synchronization manager 
thread, which ensures synchronized frame update of display 
nodes in the SyncGroup, is created for each synchronization 
group. A dynamic SyncGroup and data synchronization manager 
thread pair implements a dynamic barrier for each application. 
An example of data synchronization manager and 
synchronization group pairs in SAGE is shown in Figure 4. 
 

 
Figure 4. An example of four display nodes (tiles) 
displaying two applications. There is a data sync manager 
and SyncGroup pair for each application. 

 

Table 1. The number of messages that need to be 
exchanged in SAGE in a single round with its former 

synchronization algorithm to display application data on 
the tiled-display. 

 Number of Messages 

Application 
Frame 
Updates 

M * N  

(Each application on a node sends a message 
to its sync master.) 
 

For M applications running on a display 
driven by N nodes, we have the worst case of 
M*N messages for frame updates. 

Data Sync 
Messages  

The worst case of M*N messages from data 
synch manager 

Total 
messages 
per round 

(M*N) + (M*N) = 2*M*N 



Although this can achieve the data synchronization of multiple 
applications, this method requires excessive messages because it 
has a separate data synchronization manager for each 
application. Table 1 shows the worst-case message complexity 
when a tiled display consists of N display nodes displaying M 
applications. We also did not implement swap buffer 
synchronization explicitly. Since graphics swap buffer at each 
node can be performed as soon as data synchronization is 
finished, swap buffer synchronization can be achieved 
implicitly. Although this implicit swap buffer synchronization 
can be enough for supporting single application at a time [25], it 
may incur non-trivial synchronization jitter when it handles 
multiple applications because of the difference in CPU load and 
scheduling across display nodes. As the number of applications 
increases, the variance of the swap buffer completion time 
across all display nodes increases. Figure 5 illustrates implicit 
swap buffer synchronization that may result in incoherent frame 
display. 
 

  
Figure 5. The effect of lacking swap buffer 
synchronization. The tile node 1 executed swap buffer 
right after updating to frame N, but the tile node 0 did not 
due to its CPU load and scheduling. This uncertain delay 
may increase as the number of applications on the tile 0 
increases. This incurs frame synchronization jitter.  

 

5. The Proposed Algorithms 
In our approach, data synchronization is achieved by a single 
global synchronization master instead of a separate data 
synchronization manager for each application. We present two 
approaches in this paper – the Two-Phase algorithm and the 
One-Phase algorithm. 

In both algorithms, the global synchronization manager provides 
data synchronization. Whereas the two-phase algorithm achieves 
swap buffer synchronization with a network barrier after the 
data synchronization phase, the one-phase algorithm uses NTP 
synchronized clocks on each node. The consequence of this is 
that the Two-Phase algorithm is more generally applicable to a 
variety of high-resolution tiled display systems, whereas the 
One-Phase approach yields higher synchronization accuracy but 

has a limited range of target systems since it requires the support 
for NTP and is more CPU-intensive. 
 

5.1 Two-Phase Algorithm  
This approach consists of two distinct phases; 

1. the first phase achieves data synchronization for all 
applications, and 

2. the second phase synchronizes the swap-buffer events of 
the all display node. 

Figure 6 depicts the Two-Phase synchronization algorithm. In 
this case, we have a single global synchronization master (SYNC 
MASTER). Upon receiving a new frame at a display node, a 
corresponding application receiver on a display node sends a 
message with the new frame number and the node ID of the 
application receiver to the SYNC MASTER.  The SYNC MASTER 
has an interval timer that runs at a periodic rate called Sync 
Refresh Rate (SRR). The SRR must be a rate greater than the 
highest frame rate of all the applications in order to refresh all 
the applications at their desired rate. When the timer expires, the 
SYNC MASTER computes the highest common frame number 
for each application on all the nodes. After computing the 
highest common frame for each application, the SYNC MASTER 
sends a broadcast message to the NDM on each node. This 
message contains a list of the highest common frame number for 
each application. The NDM on each node uses this list in order 
to display the appropriate frame for each application. This 
concludes the first phase which achieves data synchronization. 

 
Table 2.  The number of messages that need to be 

exchanged in SAGE in a single round with the Two-Phase 
algorithm to display application frames on the Tiled-

Display. 

 Number of Messages 

Application Frame 
Updates 

M * N  

(Each application on a node sends a 
message to the SYNC MASTER.) 
 
For M applications running on a 
display driven by N nodes, we have 
M*N messages for frame updates. 

Phase 1: Data Sync 
Messages  

N  
(The SYNC MASTER sends a message 
to an NDM on all the N nodes.) 

Phase 2: Swap 
Buffer Sync 2N 

2a. Barrier msg 
from each NDM to 
the Barrier Master 

N 

2b. Broadcast msg 
from the Master to 
all NDM’s 

N 

Total Messages 
per round (M*N) + N +  2N  = (M+3)* N 

 



 
Figure 6. The Two-Phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall. 
The first phase ensures data synchronization, and the second phase ensures swap buffer synchronization using networked 
barrier.   

 

 

 
Figure 7. The Ones-Phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display 
wall. The first phase ensures data synchronization, and the synchronized swap buffer is ensured by making each node wait 
until Presentation Time instead of using centralized networked barrier at the SYNC MASTER. 

 



Upon finishing the first phase, the NDM on each node enters the 
second phase in order to synchronize their swap buffer event. 
This is achieved by placing a networked barrier right after frame 
buffer drawing and just before frame buffer swap in the NDM. 
This enables swap buffer synchronization with each NDM 
displaying multiple applications on the tiled-display wall. Table 
2 depicts the number of messages needed per round with the 
Two-Phase algorithm where M is the number of applications 
and N is the number of nodes driving the display wall. The Two-
Phase method uses (M-3) * N messages less than the former 
SAGE frame synchronization algorithm per round. 

The key differences between the Two-Phase and the former 
SAGE frame synchronization algorithm are: 

1. The prior version of SAGE has a data synchronization 
manager for each application while the Two-Phase 
algorithm has a single data synchronization manager 
responsible for all the applications. This drastically reduces 
the number of messages needed to reach data 
synchronization per round.  

2. The prior approach does not achieve swap buffer 
synchronization explicitly, whereas the Two-Phase 
algorithm uses a networked barrier to ensure swap buffer 
synchronization. 
 

5.2 One-Phase Algorithm  
In the One-Phase approach, we achieve both data and swap 
buffer synchronization in a single phase. We avoid the 2nd phase 
in the Two-Phase approach by synchronizing the clocks of the 
nodes driving the tiled-display. The Network Time Protocol 
(NTP), a common component in most major operating systems 
including Linux, helps synchronize the clocks on the cluster 
nodes. 
 

Table 3.  The number of messages that need to be 
exchanged in SAGE in a single round with the One-Phase 
algorithm to display application data on the Tiled-Display. 

 Number of Messages 

Application 
Frame Updates 

M * N  

(Each application on a node sends a 
message to the SYNC MASTER.) 
 

For M applications running on a display 
driven by N nodes, we have M*N messages 
for frame updates. 

Phase 1: Data 
Sync Messages 

N  
(The SYNC MASTER sends a message to an 
NDM on all the N nodes. The Presentation 
Time is embedded in the message.) 

Total 
Messages per 
round 

(M*N) + N = (M+1) * N 

 

The data synchronization procedure is identical to the 1st phase 
of the Two-Phase approach. A new term introduced in the 
algorithm is the Presentation Time (PT) that informs each 
NDM of the time when they should swap their buffer contents. 

After computing the highest common frame for each 
application, the SYNC MASTER computes PT by adding a 
Presentation Time Offset (PTO) to the current time. The SYNC 
MASTER sends a broadcast message to each NDM. This 
message contains the Presentation Time and a list of the highest 
common frame number for each application. Each NDM waits 
till the Presentation time and then displays the appropriate frame 
for each application according to the highest common frame 
number list. This procedure achieves both data and swap buffer 
synchronization. 

The Presentation Time Offset (PTO) depends on a number of 
factors including the computational load on each node, the 
message delivery time, and the maximum frame rate of all 
applications. PTO can be either fixed to a constant large value or 
computed dynamically by the SYNC MASTER based on periodic 
feedback from the various clients. In our prototype, we chose 
fixed value empirically.  
The trade-off of the One-Phase algorithm against Two-Phase 
algorithm is lower synchronization jitter in return for higher 
CPU usage due to the implementation limit. However, due to 
unpredictable nature of user interaction, network status, and 
computational load at each node, it is hard to determine proper 
PTO for each frame (for each round) adaptively at the SYNC 
MASTER.  
 

6. Experiments  
In this section, we evaluate the efficacy of the Two-Phase and 
One-Phase approach and compare them with the prior SAGE 
synchronization algorithm. We evaluate how the two new 
algorithms scale with respect to the number of applications, 
number of nodes, and the frame rate of applications. In Figure 9 
through 13, “old sage” refers to the prior version of SAGE that 
does not use the enhanced synchronization methods. In the case 
of the One-Phase approach, the wait period till the Presentation 
Time is implemented using high-resolution hardware counters. 

The testbed consists of a 28-node cluster driving an 11x5 tiled 
display wall. The cluster nodes are each equipped with 64-bit 
dual processor 2.4Ghz AMD Opterons with 4GB RAM, Nvidia 
Quadro 3000 Graphics Card in an AGP slot, and a dedicated 
1GigE network interface card (NIC). The cluster nodes run 
Linux kernel 2.6. The nodes are interconnected via a CISCO 
3750 switch with 96Gbps bisection bandwidth. A software-
based NTP server is run on the master node and a NTP client is 
run on each cluster node to synchronize the clocks. The NTP 
protocol has an accuracy of 100 microseconds. 

For the test application, we use several 1K (approximately 
1000x1000 pixel) animations stored on a high-end dual-
processor dual-core AMD Opteron node which is equipped with 
8GB RAM and is connected to the 28-node cluster over a 
10gigabit network via a 10G Neterion NIC. 

We use the difference in the swap buffer completion time among 
the various nodes as a metric to evaluate inter-tile frame 
synchronization. Figure 8 depicts the swap buffer completion 
time that is defined as the time difference between the earliest 
and the latest swap buffer completion times among all nodes for 
a particular refresh cycle. A large difference indicates the tiles 
are out-of-synch. In the case of video-playback, which is our 
main concern in this paper, the simultaneous frame transition 
across display nodes should occur in several millisecond [25]. 



Since the clocks are synchronized using NTP, the swap buffer 
completion time is measured by time-stamping the swap buffer 
completion events on each node. 

We will show our experiments on the inter-tile swap buffer 
completion time differences for a single application in the 
Section 6.1 and for multiple applications in the Section 6.2. In 
Sections 6.3 and 6.4, we will show the effect of the 
synchronization method on the frame rates of a single and 
multiple applications. The scalability with respect to the number 
of display nodes is shown in the Section 6.5. In the Section 6.6, 
we compare the average CPU usage of the NDM of the Two-
Phase and the One-Phase algorithms. 
 

 
Figure 8. The method to compute the difference in the 
swap buffer completion time at each frame among four 
display nodes.   

 
 

6.1 Inter-Tile Swap Buffer Completion Time 
Difference (Out-of-Sync Time) for a Single 
Application 
A single test application was run on the entire display at 30 
frames per second. The SYNC MASTER Refresh Rate (SRR) was 
set to 60Hz and the presentation time offset (PTO) for the One-
Phase method was configured to 9 ms. Figure 9 depicts the swap 
buffer completion time variance observed for 1000 consecutive 
frames. As seen in the figure, the difference in the completion 
time of swap buffer among the various nodes in the prior 
approach is around 12-14 ms which caused the viewers to 
visually perceive tearing in the application image on the display 
wall. The Two-Phase algorithm achieves around 2 ms - A 6-fold 
improvement over the prior approach. The One-Phase algorithm 
achieves around 0.15 ms - a 10-fold improvement over the Two-
Phase and up to 90-fold improvement over the prior approach. 
The relatively high variance in “old sage” is due to lacking swap 
buffer synchronization (i.e. the second phase of the Two-Phase 
algorithm) in NDMs. This showed the need for swap buffer 
synchronization even for the case of single application. The 
swap buffer completion time variance in the Two-Phase 
algorithm was higher than that of the One-Phase algorithm 
because of the barrier latency in the second phase of the Two-
Phase algorithm. However, both the Two-Phase and One-Phase 

algorithms achieve inter-tile frame synchronization and exhibit a 
visually seamless display across the wall. 
  

 
Figure 9. A comparison of the swap buffer completion time 
differences. The graph shows that the proposed 
synchronization algorithms achieve extremely low swap 
buffer variance in comparison to the prior frame 
synchronization method in SAGE - which in turn results in 
better inter-tile frame synchronization. The high variance in 
the prior method is mainly due to lacking swap buffer 
synchronization. 
 

6.2 Inter-Tile Swap Buffer Completion Time 
Difference (Out-of-Sync Time) with 
Increasing Number of Applications 

 
Figure 10. Average of maximum swap buffer completion 
time difference of multiple applications. The graph shows 
the algorithm scales as the number of applications is 
increased. 
 

In this experiment, we increased the number of applications 
streaming to the display wall and evaluate the impact of the 
synchronization mechanisms on the inter-tile swap buffer 



completion time. The SYNC MASTER Refresh Rate (SRR) was 
set to 60Hz and the Presentation Time Offset (PTO) for the One-
Phase algorithm was fixed at 9 ms. The test application is a 1K 
animation remotely streamed at 30fps.  

The results indicated that the prior approach, per-application 
synchronization, failed to sustain acceptable synchronization 
jitter with increasing number of applications, whereas both the 
Two-Phase and the One-Phase algorithms ensured tight frame 
synchronization despite of increasing number of applications. 
This was due to the single global synchronization master for all 
applications. Though minor increments of the swap buffer 
completion time difference were incurred by the increased 
system overhead on the display nodes as we increase the number 
of applications, this result still satisfied very tight frame 
synchronization tolerance. 

 

6.3 Evaluation on an Application’s Frame 
Rate 

 
Figure 11. Comparison of the synchronization algorithms 
on the application frame rate as we scale the frame rate of a 
single application. The Two-Phase as well as the One-Phase 
algorithms scale with an application’s frame rate. 
 

3D stereoscopic tiled display walls including the Varrier [27] 
and StarCAVE [10] are used for interactive and immersive 
stereo visualizations. Such applications require support for a 
high frame rate up to 120 fps to achieve interactivity [6]. A 
frame synchronization scheme for these applications must be 
able to achieve tight synchronization with minimal impact on 
the application’s frame rate. Though the current prototypes of 
these systems are designed for a single application, we expect 
the future extension for multiple applications. Thus, we 
evaluated the performance of the synchronization algorithms as 
we scaled the frame rate of a 1K animation displayed across the 
entire 28-node tiled display wall. In each case, the SYNC 
MASTER Refresh Interval was set 10Hz higher than the 
application rate and the Presentation Time Offset (PTO) for the 
One-Phase was set to 6ms. Figure 11 depicts the effect of the 
synchronization algorithms on the frame rate of the animation as 
we increased the target frame rate of the animation from 30fps 

to 120fps. From the figure, we observed that the two new 
algorithms were able to sustain the target frame rate with 
minimal deviation. The prior algorithm sustained the target 
frame rate till 60fps but failed to sustain it at 120fps. 

 

6.4 Aggregate Frame Rate with Increasing 
Number of Applications 

 
Figure 12. Comparison of the synchronization algorithms on 
the aggregate application frame rate as we increased the 
number of applications each runs at 30 frames per second. 
The Two-Phase and One-Phase methods scaled with the 
number of applications while the old SAGE synchronization 
algorithm showed its limited scalability. 
 

In addition to being able to sustain high frame rates, a good 
synchronization mechanism should be able to sustain the frame 
rates as increasing number of applications are launched on a 
tiled display wall. In this experiment, we increase the number of 
applications streaming to the display wall and evaluate the 
impact of the synchronization mechanisms on the aggregate 
achievable frame rate. Again, each application streams a 1K 
animation at 30fps. From Figure 12, we observed that the 
synchronization mechanisms of the previous version SAGE 
(“old sage”) was only able to sustain the frame rate for up to 
four applications and showed a 25% drop for eight applications. 
As indicated in Section 4, this is due to the fact that the per-
application based data synchronization mechanism requires 
excessive synchronization messaging. In contrast, both the Two-
Phase and the One-Phase algorithms are able to scale as the 
number of applications increases.  
 

6.5 Scalability Analysis with Increasing 
Number of Nodes 
Another key requirement of a good synchronization mechanism 
is the ability to scale with the number of display nodes. Figure 
13 depicts the inter-tile swap buffer completion time differences 
as we increased the number of display nodes and the associated 
tiled-display size. In the case of the Two-Phase algorithm, we 
observed minor increments in the inter-tile swap buffer 
completion time difference as we scaled the number of nodes. 
This was primarily an effect of the networked swap buffer 



barrier employed in the 2nd phase: as the number of nodes 
increased the time to broadcast all the messages increased and 
incurred additional lag. However, the 2 ms difference was too 
short for a user to notice any asynchrony between tiles. The 
One-Phase algorithm achieved the tightest synchronization 
(~0.02 milliseconds), primarily due to the synchronized clocks 
and use of high-resolution hardware timers for displaying the 
frame as close as possible to the presentation time. Again, the 
two new algorithms showed much more improved scalability 
than the prior approach in this test. 
 

 
Figure 13. The graph shows scalability of the algorithms as 
the number of display nodes increases. The swap buffer 
completion time difference in the Two Phase algorithm 
slightly increases due to swap buffer synchronization phase 
using a networked barrier, whereas the effect of the display 
node increase is minimal in the One Phase algorithm.  

 
 

6.6 Comparison of Average CPU Utilizations 
of the Two-Phase and the One-Phase 
Synchronization Algorithms 
We discuss the differences in resource utilizations of the Two-
Phase and the One-Phase algorithm in this section. In the One-
Phase algorithm, each display node enters into busy waiting 
loop, waits until the presentation time, and then executes 
graphics swap buffer. This achieves a synchronized swap buffer 
across display nodes and eliminates 2N network messages where 
N is the size of the cluster (total N number of display nodes). 
Thus, the One-Phase algorithm reduces message complexity at a 
cost of more CPU cycles than the Two-Phase algorithm due to 
the wait-loop. Therefore, when a tiled display is driven by a 
cluster of thin-client computers that do not have enough CPU 
resource for the wait-loop, or computationally intensive 
processes need to run on the tiled display cluster, the One-Phase 
algorithm should be avoided. In this experiment, we evaluated 
CPU usages of the NDM when a 1K animation was displayed on 
the display wall. The One-Phase algorithm used 20% of CPU 
time, whereas the Two-Phase algorithm used only 4%. 
 

7. Discussion 
The Presentation Time Offset (PTO) of the One-Phase algorithm 
has been set manually in the current implementation. PTO has to 
be carefully chosen otherwise it can fail swap buffer 
synchronization or cause unnecessary busy waiting. If it is set 
too small, a synchronization message can arrive at a display 
node behind the Presentation Time (PT). Or a node can 
complete the frame buffer drawing behind PT. The swap buffer 
synchronization fails in these cases. If it is set too long, then 
extra busy waiting can occur at a display node resulting in 
wasted CPU cycles. An example of small PTO is shown in 
Figure 15. The NDM3’s graphics swap buffer is not 
synchronized because the synchronization message arrives at the 
NDM3 behind PT. To adaptively determine PTO for each frame 
at the SYNC MASTER can resolve the problems described above. 
However, to make PTO adaptive is challenging due to the 
uncertainty in the system load on the cluster. 
 

 
Figure 15.  The effect of small PTO. The Presentation 
Time(PT) calculated from the Presentation Time 
Offset(PTO) was passed when the synchronization 
message is received at NDM3. Graphics swap buffer at 
NDM3 cannot be synchronized with swap buffer on other 
display nodes.  

 

The two algorithms we have presented assume that frames are 
delivered reliably- i.e. the image frame data must not be lost or 
dropped in any of the display nodes. Therefore, the current 
prototypes are not applicable to the case where an application 
may use UDP for streaming- this is a subject of future 
investigation.  

 

8. Conclusion  
We presented the Two-Phase and the One-Phase algorithms to 
achieve a seamless display of multiple applications on a high-
resolution tiled display wall driven by a cluster of computers. 
Whether one would choose to utilize the One-Phase versus Two-
Phase algorithm depends on the desired synchronization 
accuracy and the availability of system resources. The Two-
Phase algorithm has the advantage that it is more generic and 
can therefore be easily applied to most high–resolution tiled 



display systems including the ones driven by networked thin 
clients. It provides high synchronization accuracy generally 
acceptable for interactive high-resolution visualization. The 
One-Phase algorithm provides superior synchronization 
characteristics due to its low degree of messaging complexity. 
However, the One-Phase algorithm requires support for NTP 
and sophisticated display thread scheduling (which is currently 
implemented via a busy-wait loop). Hence, if very tight 
synchronization is required and NTP and additional unused 
processing cores are available, one should opt to use the One-
Phase algorithm. Both methods, however, will scale with respect 
to the number of applications, the frame rates of the 
applications, and the number of cluster nodes. 
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